LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - NOVEMBER 2011

MT 5407 - FORMAL LANGUAGES AND AUTOMATA

\square Max. : 100 Marks

PART - A

$\underline{\text { Answer ALL questions (} 10 \times 2=20)}$

1. Define a finite automaton.
2. Construct the state diagram for the automaton $M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\}, \delta, q_{0},\left\{q_{2}\right\}\right)$ where δ is given by

$$
\begin{array}{ll}
\delta\left(q_{0}, a\right)=q_{1} & \delta\left(q_{1}, a\right)=q_{1} \\
\delta\left(q_{2}, a\right)=q_{1} & \delta\left(q_{0}, b\right)=q_{2} \\
\delta\left(q_{1}, b\right)=q_{2} & \delta\left(q_{2}, b\right)=q_{0}
\end{array}
$$

3. Define a non deterministic finite automaton.
4. Prove that any finite subset is regular.
5. Define context-sensitive language.
6. Write a grammar for the language $L=\left\{a^{n} b^{n} / n \geq 1\right\}$.
7. Define concatenation of two languages.
8. Define an ε - free homomorphism.
9. State the Chomsky Normal form for the regular expressions.
10. Define ambiguously derivable.

PART - B

Answer any FIVE questions ($5 \times 8=40$)
11. Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a finite automaton. Let R be a relation in Q defined by $q_{1} R q_{2}$ if $\delta\left(q_{1}, a\right)=\delta\left(q_{2}, a\right)$ for all a in Σ. Show that R is an equivalence relation.
12. Construct a finite automaton that accepts exactly those input strings of 0 's and 1 's that end in 11.
13. $M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\}, \delta, q_{0},\left\{q_{3}\right\}\right)$ is a finite automaton and δ is given by

$Q \backslash \Sigma$	0	1
q_{0}	q_{1}	q_{1}
q_{1}	q_{2}	q_{3}
q_{2}	q_{3}	q_{1}
q_{3}	q_{0}	q_{2}

Find (i) $\hat{\delta}\left(q_{0}, 011010\right)$
(ii) $\hat{\delta}\left(q_{0}, 1110011\right)$
14. Prove that union of two regular sets is also regular.
15. Let $G=(N, T, P, S), N=\{S, B\}, T=\{a, b, c\} . P$ consists of the following productions:

1. $S \rightarrow a S B c$
2. $S \rightarrow a b c$
3. $c B \rightarrow B c$
4. $b B \rightarrow b b$

Then show that $L(G)=\left\{a^{n} b^{n} c^{n} / n \geq 1\right\}$ is a CSL.
16. Write a CNF grammar for the language $L=\left\{w c w^{R} / w \in(a, b)^{*}\right\}$ and give two examples.
17. Prove that if L is a CFL generated by $G=(N, T, P, S)$, where P consists of rules of the form $A \rightarrow \alpha, A \in N, \alpha \in(N \cup T)^{*}$, then L can be generated by a CFG in which every rule is either of the form $A \rightarrow \alpha, A \in N, \alpha \in(N \cup T)^{+}$, or $S \rightarrow \varepsilon$, Further S does not appear on the right side of any rule.
18. Let $G=(N, T, P, S)$, where $N=\{S, A\}, T=\{a, b\}$ and P consists of the rules

1. $S \rightarrow a A b$
2. $S \rightarrow a b S b$
3. $S \rightarrow a$
4. $A \rightarrow b S$
5. $A \rightarrow a A A b$

Find the leftmost and rightmost derivations for the string $a b a b$.

PART - C

Answer any TWO question ($2 \times 20=40$)

19. a) Let $M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{a, b\}, \delta, q_{0},\left\{q_{1}\right\}\right)$ where δ is given by

$$
\begin{array}{ll}
\delta\left(q_{0}, a\right)=q_{1} & \delta\left(q_{0}, b\right)=q_{2} \\
\delta\left(q_{1}, a\right)=q_{3} & \delta\left(q_{1}, b\right)=q_{0} \\
\delta\left(q_{2}, a\right)=q_{2} & \delta\left(q_{2}, b\right)=q_{2} \\
\delta\left(q_{3}, a\right)=q_{2} & \delta\left(q_{3}, b\right)=q_{2}
\end{array}
$$

(a) Construct the state table for the given automaton M .
(b) Draw the state diagram for the given automaton M.
(c) Which of the following strings are accepted by M?
(i) ababa
(ii) aabba
(iii) aaaab
(iv) bbbaa
b) Construct a finite automaton M accepting $\{a b, b a\}$.
20. State and prove the Pumping Lemma.
21. Let $G=(\{S, Z, A, B\},\{a, b\}, P, S)$ where P consists of the following productions:

1. $S \rightarrow a S A$
2. $S \rightarrow a Z A$
3. $Z \rightarrow b Z B$
4. $Z \rightarrow b B$
5. $B A \rightarrow A B$
6. $A B \rightarrow A b$
7. $b B \rightarrow b b$
8. $b A \rightarrow b a$
9. $a A \rightarrow a a$

Then show that $L(G)=\left\{a^{n} b^{m} a^{n} b^{m} / n, m \geq 1\right\}$.
22. a). Prove that the family of CFL is closed under substitution.
b). Let $G=(N, T, P, S)$, be any context-free grammar generating a non- empty language.

Show that there exists an equivalent grammar G_{1} such that for each non-terminal A of G_{1}, there is a derivation $S \Rightarrow \alpha_{1} A \alpha_{2}, \alpha_{1}, \alpha_{2} \in(N U T)^{*} . \quad(10+10)$

